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2.7 STRAIN THEORY, TRANSFORMATION OF STRAIN, 
AND PRINCIPAL STRAINS’ 

The theory of stress of a continuous medium rests solely on Newton’s laws. As is shown in 
this section, the theory of strain rests solely on geometric concepts. Both the theories of 
stress and strain are, therefore, independent of material behavior and, as such, are applica- 
ble to the study of all materials. Furthermore, although the theories of stress and strain are 
based on different physical concepts, mathematically, they are equivalent, as will become 
evident in the following discussion. 

2.7.1 Strain of a Line Element 

When a body is deformed, the particle at point P :  (x, y, z) passes to the point P* : (x*, y*, 
z*) (Figure 2.18). Also, the particle at point Q : ( x  + dx, y + dy, z + dz) passes to the point 
Q* : (x* + dx*, y* + dy*, z* + dz*), and the infinitesimal line element PQ = ds passes into 
the line element P*Q* = ds*. We define the engineering strain eE of the line element PQ = 
ds as 

dS* - d s  
EE = - 

d s  
(2.57) 

Therefore, by this definition, eE > -1. Equation 2.57 is employed widely in engineering. 
The definition of strain given in Eq. 2.57 is not unique. That is, other, equally valid 

definitions of strain have been proposed. Here we also develop an alternative definition of 
strain, known as Green strain. By Eqs. 2.55, we obtain the total differential 

ax* ax* ax* 
dx dy dz dX* = -dX + -dy + -dz 

\ 
\ 
. Y ,-------- 

/ /I R* 
/ ‘. 

FIGURE 2.18 Line segment PO in undeformed and deformed body. 

(2.58) 

7The theory presented in this section includes quadratic terms in the displacement components (u, v, w) and in the 
engineering strain cE One may discard all quadratic terms in u, v, w, and cE and directly obtain the theory of 
strain for small deformations. (See Section 2.8.) 



56 CHAPTER 2 THEORIES OF STRESS AND STRAIN 

with similar expressions for dy* and dz*. Noting that 

x* = x + u  

y* = y + v  

z* = z + w  

(2.59) 

where (u, v, w )  denote the (x, y ,  z )  components of the displacement of P to P*, and also 
noting that 

(ds)" = (dx)' + (dy)' + (dz)' 

(ds*)2  = ( d x * )  + ( d y * )  + ( d z * )  
2 2 2 

we find' [retaining quadratic terms in derivatives of (u, v, w)]  

2 2 + m k  + m  E + m n ~  + n l ~ , , + n r n e z y + n  eZZ 
Y X  YY YZ 

= 1 2 e X x + m  2 E + n  2 ~ , , + 2 1 m ~  + 2 1 n ~ , ~ + 2 r n n ~ ~ ,  
YY X Y  

(2.60) 

(2.61) 

where M is called the magnification factor. The magnification factor M is a measure of the 
strain of a line in the body with direction cosines (I, m, n). This quantity is also known as 
the total Green strain. The components of Green strain, from Eq. 2.61, are 

1 &  du ad& dVay+&& --I -+  -+--+-- ( - 
E X Z  - E Z X  = 2 ax dz ax& ax& ax dz 

where 

(2.62) 

(2.63) 

'Although one may compute eE directly from Eq. 2.57, it is mathematically simpler to form the quantity 
M = 1 [(ds*/ds)* - 11 = f [(I + eE)* - I] = eE + f e t .  Then one may compute eE from Eq. 2.61. For small EE 

(Section 2.8), eE = M .  A more detailed derivation of Eq. 2.61 is given by Boresi and Chong (2000, Section 2-6). 
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are the direction cosines of line element ds. These are the finite strain-displacement rela- 
tions. They are valid for any magnitude of displacement (u, v, w) of the body? 

We may interpret the quantities E,, eyU, and ezz physically, by considering line ele- 
ments ds that lie parallel to the (x, y, z )  axes, respectively. For example, let the line element 
ds (Figure 2.18) lie parallel to the x axis. Then I = 1, m = n = 0, and Eq. 2.61 yields 

(2.61a) 

where M, and eEx denote the magnification factor and the engineering strain of the ele- 
ment ds (parallel to the x direction). Hence, E,, physically, is the magnification factor of 
the line element at P that lies initially in the x direction. In particular, if the engineering 
strain is small << l), we obtain the result E, = eEx: namely, that E, is approximately 
equal to the engineering strain for small strains. Similarly, for the cases where initially ds 
lies parallel to the y axis and then the z axis, we obtain 

1 2  .h4 = E E y  + 2 E E y  = E Y y  Y 
(2.61b) 

M, = E ~ , + ~ E ~ ,  = E,, 

Thus, ( E ~ ,  eYy, ezz) physically represent the magnification factors for line elements that h i -  
tially lie parallel to the (x, y, z )  axes, respectively. 

To obtain a physical interpretation of the components eq, eXz, eyZ, it is necessary to 
determine the rotation between two line elements initially parallel to the (x, y )  axes, (x, z )  
axes, and (y, z )  axes, respectively. To do this, we first determine the final direction of a sin- 
gle line element under the deformation. Then, we use this result to determine the rotation 
between two line elements. 

2.7.2 Final Direction of a Line Element 

As a result of the deformation, the line element ds : (dw, dy, dz) deforms into the line ele- 
ment ds* : (&*, dy*, dz*). By definition, the direction cosines of ds and ds* are 

Alternatively, we may write 

By Eqs. 2.58 and 2.59, we find 

(2.64) 

(2.65) 

% small-displacement theoty, the quadratic terms in Eqs. 2.62 are neglected. Then, Eqs. 2.62 reduce to Eqs. 2.81. 



58 CHAPTER 2 THEORIES OF STRESS AND STRAIN 

Hence, Eqs. 2.65-2.67 yield 

& a 4  ( l + E E ) z *  = ( 1 +- z ) l + & m + z n  

(2.66) 

(2.67) 

(2.68) 

Equations 2.68 represent the final direction cosines of line element ds when it passes into 
the line element ds* under the deformation. 

2.7.3 Rotation Between Two Line Elements 
(Definition of Shear Strain) 

Next, let us consider two infinitesimal line elements PA and PB of lengths ds, and ds, 
emanating from point P. For simplicity, let PA be perpendicular to PB'O (Figure 2.19). Let 
the direction cosines of lines PA and PB be (Il ,  ml ,  nl) and (12, m2, n2), respectively. As the 

\ X 

X 

FIGURE 2.19 Line segments PA and PB before and after deformation. 

'%is restriction is not necessary but is used for simplicity. See Boresi and Chong (2000). 
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result of the deformation, line elements PA and PB are transformed into line elements 
P*A* and P*B*, with direction cosines (lT, m;, nT) and ( l i ,  m;, n;)  , respectively. Since 
PA is perpendicular to PB, by the definition of scalar product of vectors 

cosE = 1 1 / 2 + m l m 2 + n l n 2  = O 
2 

(2.69) 

Similarly, the angle 6r between P*A* and P*B* is defined by 

cos6* = IT1;+mTrn,*+n;n,* (2.70) 

In turn, (lf, mf, nT) and (l;, mi ,  n;) are expressed in terms of (11, ml, n l )  and ( I 2 ,  m2, n2), 
respectively, by means of Eq. 2.68. Hence, by Eqs. 2.68-2.70, we may write with Eqs. 2.62 

y12 = ( 1  + E E 1 ) (  1 + EE2)C0S6* 

= 21112~xx + 2m m E + 2 n 1 n 2 ~ , ,  + 2(11m2 + Z2ml)Exy 1 2 Y Y  (2.71) 

+ 2(m1n2 +m2n1)Eyz + 2 G p ,  + 12nl)Exz 

where x2  is defined to be the engineering shear strain between line elements PA and PB 
as they are deformed into P*A* and P*B* (Figure 2.19). 

To obtain a physical interpretation of exy, we now let PA and PB be oriented initially 
parallel to axes x and y, respectively. Hence, 1, = 1 ,  ml = nl = 0 and l2 = n2 = 0, m2 = 1 .  
Then Eq. 2.71 yields the result 

Y12 = Yxy = 2Exy (2.72) 

In other words, 2exy represents the engineering shear strain between two line elements ini- 
tially parallel to the x and y axes, respectively. Similarly, we may consider PA and PB to be 
oriented initially parallel to the y and z axes and then to the x and z axes to obtain similar 
interpretations for erZ and exz. Thus, 

Yxy = 2Exy. Yy,  = 2EYZ' Y,, = 2Exz (2.73) 

represent the engineering shear strains between two line elements initially parallel to the 
(x, y), (y, z), and (x, z) axes, respectively. 

If the strains EE2 are small and the rotations are small (e.g., 6r = n / 2 ) ,  Eq. 2.71 
yields the approximation 

y12 = ( 1 + EEl ( 1 + EE2) cos e * = E - e * (2.74) 

and the engineering shear strain becomes approximately equal to the change in angle 
between line elements PA and PB. 

Other results, which are analogous to those of stress theory (Sections 2.3 and 2.4), 
also hold. For example, the symmetric array 

2 

(2.75) 

is the strain tensor. Under a rotation of axes, the components of the strain tensor ( E ~ ,  exy, 
ex,, ...) transform in exactly the same way as those of the stress tensor (Eqs. 2.15 and 
2.17). (Compare Eqs. 2.5 and 2.75. Also compare Eqs. 2.11 and 2.61.) 
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To show this transformation, consider again axes (x, y, z) and (X, Y, Z), as in Section 
2.4, Figure 2.8 (also Figure 2.18), and Table 2.2. The strain components em, eXy, eXz,. . ., 
are defined with reference to axes (X, Y, 2)  in the same manner as exx, exy, eXz, ... are 
defined relative to axes (x, y, z). Hence, em is the extensional strain of a line element at 
point P (Figure 2.18) that lies in the direction of the X axis, and exy and eXz are shear com- 
ponents between pairs of line elements that are parallel to axes (X, Y) and (X, Z), respec- 
tively, and so on for ew, eZz, and eYz. Hence, if we let element ds lie parallel to the X axis, 
Eq. 2.61, with Table 2.2, yields 

(2.76a) 2 2 2 eXX = l l exx  + mleyy + nlezz + 2l1mleXy + 2l1n1eXz + 2mlnleyz 

For the line elements that lie parallel to axes Y and 2, respectively, we have 

(2.76b) 

(2.76~) 

2 2 2 
eyy = 12exx + m E 

eZZ = 13exx + m E 

+ n2ezz + 2l2m2eXy + 21,n2ex, + 2m2n2eyz 

+ n3ezZ + 2l3m3eXy -+ 213n3exz + 2m3n3eyz 

2 YY 

3 YY 
2 2 2 

Similarly, if we take line elements PA and PB parallel, respectively to axes X and Y 
(Figure 2.19), Eqs. 2.71 and 2.73 yield the result 

In a similar manner. we find 

1 
?yYz = eyZ = 1213exx+m 2 3 y y  m E + n  2 3 z z  n E +(12m3 +13m2)exy 

+ (m2n3 + m3n2)eyz + (12n3 + 13n2)Exz 

(2.76d) 

(2.76e) 

1 
Zyxz = eXZ = 1113exx + m m E + nln3eZz + (l,m3 + l3ml)eXy 

1 3 Y Y  (2.760 

where (11, ml, nl), ( I 2 ,  m2, n2), and (13 ,  m3, n3) are the direction cosines of axes X, Y, and Z, 
respectively. 

Equations 2.76 represent the transformation of the strain tensor (ern, eD,. . ., eYz) under a 
rotation from axes (x, y, z) to axes (X, Y, Z). (See Figures 2.18 and 2.19 and also Figure 2.8.) 

2.7.4 Principal Strains 

Through any point in an undeformed member, there exist three mutually perpendicular 
line elements that remain perpendicular under the deformation. The strains of these 
three line elements are called the principal strains at the point. We denote them by (eEl, 
eE2, eE3) and the corresponding principal values of the magnification factor M = eE + 
i :; are denoted by (M1, M2, M 3 ) .  By analogy with stress theory (Section 2.4), the 
principal values of the magnification factor are the three roots of the determinantal 
equation 
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E x x - M  E X Y  E x ,  

E - M  E y z  
€ X Y  YY 

Exz E Y Z  E z z - M  

or 

where 

= o  

E E  YY Y Z  

E y z  E z z  

2 2  
- E x ,  - E y z  

3 2 M - i 1 M  + i 2 M - i 3  = O 

1 2  M = E E + 2 E E  

i ,  = Ex,  + eYY + eZZ 

(2.77a) 

(2.77b) 

(2.78) 

are the strain invariants (see Eqs. 2.19-2.21). Because of the symme-_y of the determinant 
of Eq. 2.77a, the roots Mi, where i = 1,2,3, are always real. Also since eEi > -1, then Mi > -1. 

The three principal strain directions associated with the three principal strains 
gE2, eE3), Eq. 2.77b, are obtained as the solution for (1, m, n)  of the equations 

l (eXx - M )  + mexy + nexz = 0 

1~ 

E E , ,  + me 

+ m(Eyy - M )  + nEyz = 0 

+ n(EZZ - M )  = 0 

2 2 2  1 + m  + I t  = 1 

X Y  

Y Z  

(2.79) 

Recall that only two of the first three of Eqs. 2.79 are independent. The solution M = M I  yields 
the direction cosines for E E  = EEI and SO on forM = M2(EE = E E ~ ) ,  M = M3(+ = EE3). 

If (x, y, z )  axes are principal strain axes, eXx = M , ,  E , , ~  = M2, eZz = M3, E~ = eXz = 
eyZ = 0 and the expressions for the strain invariants TI ,  r2, 1, reduce to 

(2.80) 

2.8 SMALL-DISPLACEMENT THEORY 

The deformation theory developed in Sections 2.6 and 2.7 is purely geometrical and the 
associated equations are exact. In the small-displacement theory, the quadratic terms in 
Eqs. 2.62 are discarded. Then 
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dv dw 
d;. 

E -  
du 

E X X  = - dx’ y y - 5 ’  E Z Z = -  

E --(-+-), l d v  a4 E x , = - ( - + - ) .  1 d w  al E --(- 1 & + d v  z) 
x y  2 dx ay 2 dx dz y z  2 ay 

(2.81) 

are the strain-displacement relations for small-displacement theory. Then, the magnifica- 
tion factor reduces to 

M = EE (2.82) 

Hence, for small-displacement theory, the total Green strain equals the engineering strain 
of a line element PQ (Figure 2.18). 

The above approximations, which are the basis for small-displacement theory, imply 
that the strains and rotations (excluding rigid-body rotations) are small compared to unity. 
The latter condition is not necessarily satisfied in the deformation of thin flexible bodies, 
such as rods, plates, and shells. For these bodies the rotations may be large. Consequently, 
the small-displacement theory must be used with caution: It is usually applicable for mas- 
sive (thick) bodies, but it may give results that are seriously in error when applied to thin 
flexible bodies. 

2.8.1 Strain Compatibility Relations 

The six strain components are found by Eqs. 2.81 if the three displacement components (u, 
v, w) are known. However, the three displacement components (u, v, w) cannot be deter- 
mined by the integration of Eqs. 2.81 if the six strain components are chosen arbitrarily. 
That is, certain relationships (the strain compatibility relations) among the six strain com- 
ponents must exist so that Eqs. 2.81 may be integrated to obtain the three displacement 
components. To illustrate this point, for simplicity, consider the case of plane strain rela- 
tive to the (x, y) plane. This state of strain is defined by the condition that the displacement 
components (u, v) are functions of (x, y )  only and w = constant. Then Eqs. 2.81 yield 

- - E X ,  - E y z  - E, ,  = 0 

The strain compatibility condition is obtained by elimination of the two displacement 
components (u, v) from the three nonzero strain-displacement relations in Eqs. (a). This 
can be done by differentiation and addition as follows. Note that, by differentiation, Eqs. 
(a) yield 

and 

2d2E d3u d3v 
d x &  dxdy2 dx2 & 

x y  = -+- 

Addition of the right-hand sides of Eqs. (b) shows that the right-hand side of Eq. (c) is 
obtained. Therefore, the relation 
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among the three strain components exists. This result, valid for small strains, is known as 
the strain compatibility relation for plane strain. In the general case, a similar elimination 
of (u, v, w) from Eqs. 2.81 yields the results (Boresi and Chong, 2000, Section 2-16) 

2 2 
d2'YY + Exy 

d2ezz -+-=2-  d2€,  d2€xz 

- 2- 
dx2 dy2 

ax2 dz2 dx dz 

d25z d2eyy = 2 y z  d2€ -+- 
dy2 . dz 2 dydz 

2 
d2ezz d2e d2e d eZx 
- + x y  = yz+- 
ax dy dz2 dz dx dy dz 

(2.83) 

2 2 
d ex, d2€ d2eXz d eXy -+A = - 
dy dz dx2 d X d y + Z z  

Equations 2.83 are known as the strain compatibility equations of small-displacement the- 
ory. It may be shown that if the strain components (ern, eYu, ezz, ev, e,,, eyz) satisfy Eqs. 
2.83, there exist displacement components (u, v, w) that are solutions of Eqs. 2.81. More 
fully, in the small-displacement theory, the functions (en, cYy, ezz, eq, eXz, eYz) are possible 
components of strain if, and only if, they satisfy Eqs. 2.83. For large displacement theory, 
the equivalent results are given by Mumahan (1951). 

2.8.2 Strain-Displacement Relations for Orthogonal 
Curvilinear Coordinates 

More generally, the strain-displacement relations (Eqs. 2.62) may be written for orthogo- 
nal curvilinear coordinates (Figure 2.16). The derivation of the expressions for (ern, eyy, 
eZz, ev, eXz, eYz) is a routine problem (Boresi and Chong, 2000). For small-displacement 
theory, the results are 

(2.84) 
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Solution The magnitudes of Cl, C2, and C, are obtained from the fact that the displacements of point E are 
known as follows: uE = 0.004 m, v, = 0.002 m, and w, = -0.004 m. Thus, 

0.004 

0.002 
3 
0.004 

u = -  X Y Z  

X Y Z  v = -  

w = -- X Y Z  

(a) The strain components for the state of strain at point E are given by Eqs. 2.81. At point E, 

eXX = d. = 0.004yz = 0.00267, eyy = 0.00200, E,,  = -0.00200 
ax 3 

y = 2eXy = 0.00533, yX, = 2eX, = -0.00067 

yyz = 2eyz = -0.00300 
X Y  

(b) Let the X axis lie along the line from E to A. The direction cosines of EA are 1, = 0, ml = -11 & , 
and n1 = -21 3 . Equations 2.61 and 2.82 give the magnitude for eXx. Thus, 

2 2 em = Eyyml + ~ , , n ~  + 2 ~ ~ ~ m ~ n ~  
- 0.00200 0.00200(4) - 0.00300(2) = -o.oo240 --- 

5 5 5 

(c) Let the Y axis lie along the line from E to F. The direction cosines of EF are 1, = - 1, m2 = 0, and 
n2 = 0. The shear strain yxr = 2eXy is given by Eq. 2.76d. Thus, 

yxu = 2eXy = 2e I m1 +2exz12n1 X Y  2 

FIGURE E2.8 
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EXAMPLE 2.9 
State of Strain 

in Torsion- 
Tension Member 

Solution 

A straight torsion-tension member with a solid circular cross section has a length L = 6 m and radius 
R = 10 mm. The member is subjected to tension and torsion loads that produce an elongation AL = 10 mm 
and a rotation of one end of the member with respect to the other end of z/3 rad. Let the origin of the 
(r, 6, z) cylindrical coordinate axes lie at the centroid of one end of the member, with the z axis 
extending along the centroidal axis of the member. The deformations of the member are assumed to 
occur under conditions of constant volume. The end z = 0 is constrained so that only radial displace- 
ments are possible there. 

(a) Determine the displacements for any point in the member and the state of strain for a point on the 
outer surface. 

(b) Determine the principal strains for the point where the state of strain was determined. 

The change in radius AR for the member is obtained from the condition of constant volume. Thus, 

~ R ~ L  = Z(R + A R ) ~ ( L  + A L )  

102(6 x lo3) = (10 + AR)2(6010) 
AR = -0.00832 mm 

(a) The displacements components 

u = r+)r = -0.000832r [mm] 

v = ( y ) r z  = 0.0001745rz [mm] 

w = e)z = 0.001667~ [mml 

satisfy the displacement boundary conditions at z = 0. The strain components at the outer radius are 
given by Eqs. 2.85. They are (rounded to six decimal places) 

a4 u Idv 
ar r d6 

dz rd6 dr r 
a 4 d v  dv I d v  
d z a r  aZ rd6  

E,, = - = -0.000832, 

EZZ = - - 

y,, = 2 ~ , ,  = - + - = 0, 

E B B  = ; + -- = -0.000832 

dw - 0.001667, yr8 = 2er8 = la4 dv v = 0 

ye* = 2eOZ = - + -- = 0.001745 

(b) The three principal strains are the three roots of a cubic equation, Eq. 2.77b, where the three 
invariants of strain are defined by Eqs. 2.78. Choose the (x, y, z) coordinate axes at the point on the 
outer surface of the member where the strain components have been determined in part (a). Letx = r, 
y = 6, and z = z. From Eqs. 2.78, 

f 
- 2 2 2  

= E,, + eO8 + E,, = - 0.000832 - 0.000832 + 0.001667 = 0 

1 2  = E,,Eee+ E E + Ee&,,- E r e -  E r Z -  E& rr z z  

= (-0.000832)(-0.000832) + (-0.000832)(0.001667) 

+ (-0.000832)(0.00l667) - - (0.00:745)2 
= -2.838 x 
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EXAMPLE 2.10 
Mohr’s Circle for 

Plane Strain 

Solution 

= 1.785 x 

-0.000832 0 O I  
0 -0.000832 0-001745 

0 0*001745 0.001667 

2 

2 

Substitution of these results into Eq. 2.77b gives the following cubic equation in E (= h4): 

c3 - 2.838 x - 1.785 x = 0 

One principal strain, err = -0.000832, is known. Factoring out this root, we find 

e2 - 0.000832~ - 2.146 x = 0 

Solution of this quadratic equation yields the remaining two principal strains. Thus, the three princi- 
pal strains are 

= 0.001939 

€2 = -0.000832 

€3 = -0.001107 

A state of plane strain (E,~  = ex2 = eYz = 0) at a point in a body is given, with respect to the (x. y, z) axes, 
as err = 0.00044, eYy = 0.00016, and E~ = -0.oooO8. Determine the principal strains in the (x, y) 
plane, the orientation of the principal axes of strain, the maximum shear strain, and the strain state on 
a block rotated by an angle of 6‘ = 25” measured counterclockwise with respect to the reference axes. 

Since the components of strain form a symmetric second-order tensor, they are transformed in pre- 
cisely the same way as stresses. Thus, plane strain states can be represented by Mohr’s circle in the 
same way as plane stress states. By analogy to the development for plane stress, Mohr’s circle for 
plane strain is defined by the equation (see Eq. 2.32) 

Equation (a) is the equation of a circle in the (eXX, eXr) plane with center coordinates 

and radius 

The orientation of the principal axes of strain is given by the angle 0, where 

2Exy 
EXX - Eyy 

t a n % =  - 
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and 8 is measured with respect to the reference x axis, positive in the counterclockwise sense. The 
~ principal strains are 

€ 2  = ( E X X  + 2 
- / m y  

The maximum shear strain is simply the radius of the circle as given by Eq. (c). 
= Mop, eyy = 160p, and eXy = - 80p, 

where p = lo4. This representation of strain is known as microstrain. The Mohr's circle for these 
data is shown in Figure E2.10~. By Eqs. (b) and (c), the center of the circle is located at point C with 
coordinates (300p, 0) and its radius is R = 161p. By Eqs. (e) and (f), the principal strains are 

For the data given, the state of strain may be expressed as 

On Mohr's circle, they correspond to points Q and Q', respectively. The reference strain state is plot- 
ted at points P(E=, E ~ )  and P'(eYy, - ex?). Note that the positive eXy axis is directed downward, as is 
done with the plane stress case. By Eq. (d) the principal axis corresponding to E ,  in the body is 
located at an angle of 8 = - 14.87" with respect to the x axis. On Mohr's circle, this corresponds to an 
angle 28  = -29.74" from line CP to line CQ. 

The maximum value of shear strain is E ~ ~ ( ~ ~ ~ )  = R = 161p. It occurs at an orientation of k45" from 
the principal axis for E ,  (*90" from line CQ on Mohr's circle). Note that this is the maximum shear 
strain using the tensor definition of strain. The maximum engineering shear strain is Y ~ ~ ( ~ ~ ~ )  = 
2eXyCmaxf = 322p (Eq. 2.73). The strain state on a block at 8'= 25" (50" on Mohr's circle) is identified 
by points S ( E ' ~ ,  E$) and S ' ( E > ~ ,  - E>$. By geometry of the circle, the strain quantities are 

€;, = OC+ R Cos(2w-2e) = 329p 

E i y  = O C - R  C O S ( ~ I Y - ~ ~ )  = 2 7 i p  

E;,, = -Rsin(28'-28) = 295p 

In Figure E2.10b, the deformed shape of an element in the reference orientation is shown. Also illus- 
trated is the deformed shape in the principal orientation, which is at an angle of 8 = -14.87" with 
respect to the x axis. Notice that in this orientation, the deformed element is not distorted, since the 
shear strain is zero. Finally, the deformed shape at 8' = 25" with respect to the reference orientation is 
shown. 

0 Deformed 
r- -1 Undeformed 

2- 

= 461p -4 orientation 

I (0) (h) 

FIGURE E2.10 (a) Mohr's circle for plane strain. (b)  Deformed element in three different 
orientations. 
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EXAMPLE 2.1 1 
Integration ot 

the Strain- 
Displacement 

Relations 
for Small- 

Displacemeni 
Theory 

Solution 

For small-displacement plane strain, the strain components in the plate ABCD (Figure E2.1 I),  in 
terms of the coordinate system (x, y ) ,  are 

where A, C, and D are known constants. The displacement components (u. v) at x = y = 0 are 

u(0,O) = 0, v (0 ,O)  = 0 (b) 

and the slope &/dy at x = y = 0 is 

= o  (c) 

Determine u and v as functions of (x,  y ) .  

FIGURE E2.11 

By Eqs. 2.81 and (a), we have 

a4 
d X  

EX. = C y ( L  - x )  = - 

av 
& E y y  = D y ( L - x )  = 

2 2  a 4 a v  = 2eXy = -(C + D ) ( A  - y  ) = - + - 
dy ax y XY 

Integration of Eqs. (d) and (e) yields 

u = c y ( L x - ; x * ) + Y ( y )  

1 2  
2 

v = - D y  ( L - x ) + X ( x )  

(f) 

where X and Y are functions of x and y ,  respectively. Substituting Eqs. (g) and (h) into Eq. (f) and 
regrouping terms, we obtain 

dY 1 2 2 2  d x + c  L x - 5  = - - + - D y  - ( C + D ) ( A  - y  ) - d x  ( 2’) dy 2 
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For Eq. (i) to be satisfied, both sides of the equation must be equal to the same constant. That is, 

" + C ( L x - i x 2 )  dx = E (i) 

dY 1 2 2 2  
(k) - - + - D y  - ( C + D ) ( A  - y  ) = E 

dY 2 

where E is a constant. 
Then integrations of Eqs. (j) and (k) yield 

X ( x )  = -c -Lx ---x + E x + . /  (1 : 3, 

1 3  
6 

Y ( y )  = -Dy  -(C+D) 

where J and K are constants. By Eqs. (g), (h), (l), and (m), we find 

y + F  (n) 'I 
(0) 

1 2  
2 

v = -Dy  ( L - x ) - C  

By Eqs. (b), (n), and (o), F = 0 and J = 0. Then by Eqs. (c) and (n), E is determined as 

E = ( c + D ) A ~  

Equations (n) and (0) are modified accordingly. 

2.9 STRAIN MEASUREMENT AND STRAIN ROSElTES 

For members of complex shape subjected to loads, it may be mathematically impractical 
or impossible to derive analytical load-stress relations. Then, either numerical or experi- 
mental methods are used to obtain approximate results. Several experimental methods are 
used, the most common one being the use of strain gages. 

Strain gages are used to measure extensional strains on the free surface of a member or 
the axial extension/contraction of a bar. They cannot be used to measure the strain at an interior 
point of a member. To measure interior strains (or stresses), other techniques such as photoelas- 
hcity may be used, although this method has been largely superseded by modem numerical 
techniques. Nevertheless, photoelastic methods are still useful when augmented with modem 
computer data-acquisi tion techniques (Kobayashi, 1987). Additional experimental procedures 
are also available. They include holographic, Moirk, and laser speckle interferometry tech- 
niques. These specialized methods lie outside of the scope of this text (see Kobayashi, 1987). 
We shall discuss only the use of electrical resistance (bonded) strain gages. 

Electric strain gages are used to obtain average extensional strain over a given gage 
length. These gages are made of very fine wire or metal foil and are glued to the surface of 
the member being tested. When forces are applied to the member, the gage elongates or 
contracts with the member. The change in length of the gage alters its electrical resistance. 
The change in resistance can be measured and calibrated to indicate the average exten- 
sional strain that occurs over the gage length. To meet various requirements, gages are 
made in a variety of gage lengths, varying from 4 to 150 mm (approximately 0.15 to 6 in.), 
and are designed for different environmental conditions. 



EXAMPLE 2.12 
Measurement oi 

Strain on a 
Surface of a 

Member 

Solution 

b 

2.9 STRAIN MEASUREMENT AND STRAIN ROSETTES 7 1 

b 

(a) (b) 

FIGURE 2.20 Rosette strain gages. (a )  Delta rosette. (b)  Rectangular rosette. 

Three extensional strain measurements in three different directions at a point on the 
surface of a member are required to determine the average state of strain at that point. 
Consequently, it is customary to cluster together three gages to form a strain rosette that 
may be cemented to the free surface of a member. Two common forms of rosettes are the 
delta rosette (with three gages spaced at 60" angles) and the rectangular rosette (with 
three gages spaced at 45" angles), as shown in Figure 2.20. From the measurement of 
extensional strains along the gage arm directions (directions a, b, c in Figure 2.20), one 
can determine the strain components (en, eYy, E ) at the point, relative to the (x, y) axes. 
Usually, one of the axes is taken to be aligned with one arm of the rosette, say, the arm a. 
For instance, we might mount the rosette such that = E,, the average extensional strain 
in the direction a.  Then, the components (eYy, eXy) may be expressed in terms of the mea- 
sured extensional strains E,, Eb, and E, in the directions of the three rosette arms a, b, and c, 
respectively. (See Example 2.12.) 

xy 

A strain rosette with gages spaced at an angle 8 is cemented to the free surface (eZz = eXZ = eYz = 0) of 
a member (Figure E2.12). Under a deformation of the member, the extensional strains measured by 
gages a, b, c are E,, q,, E,, respectively. 

(a) Derive equations that determine the strain components E,, eYy, E~ in terms of E,, Eb, E,, and 8. 

(b) Specialize the results for the delta rosette (8 = 60") and rectangular rosette (8 = 45"). 

c 

FIGURE E2.12 

(a) The direction cosines of arms a, b, and c are, respectively, 

( la ,  ma, nu) = (1 ,O,O), ( lb ,  mb, nb) = (cos 8, sine, 0), ( l , ,  m,, n,) = (cos 28, sin 2 8 , O )  

The extensional strain of a line element in the direction (1, m, n) is given by Eq. 2.61. Hence, by Eq. 
2.61, the extensional strains in the directions of arms a, b, c are 

Ea = E X X  

eb = E ~ ~ ( C O S  8) + eyY( sin 8) + 2exy( cos 8)( sine) 

E,  = E,,(COS 28) + Eyy(sin 28) + ~E,..(cos %)(sin 28) 

2 2 

2 2 
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Equations (a) are three equations that may be solved for eXx, eYy, and E~ in terms of E,, eb, and ec for a 
given angle 8. The solution is 

' x x  = 'a 

(E, - 2eb) sin 40 + 2ec sin 28 

4 sin2@ sin B 
E =  YY 

2 2  2 2 2 2 2ea(sin Bcos 28-sin B c o s  8)+2(ebsin 2f3-Ecsin 8) 

4sin2e sin20 
e =  
XY 

(b) For 8=  60", cos 8= 112, sin 8=  &/2, cos 28= -112, and sin 28= &/2. Therefore, for 8= 60", 
Fqs. (b) yield 

(c) 

For8=45",cos 8=  I/,&, s in@= 1/&, cos28=0,ands in28= I.Therefore,for8=45",Eqs. (b) 
yield 

- - 2(Eb + E c )  - E, Eb - EC , Exy = - 
3 J3 ' x x  - 'a1 ' y y  - 

( 4  
1 

exx = Ea> Eyy - - Ec, Exy = Eb-  pa + E C )  

PROBLEMS 

Sections 2.1-2.4 

Many of the problems for Sections 2.1-2.4 require the determi- 
nation of principal stresses and maximum shear stress, as well 
as the location of the planes on which they act. These quantities 
are required input in design and failure criteria for structural and 
mechanical systems. 
2.1. The state of stress at a point in a body is given by the fol- 
lowing components: on = 50 MPa, oyY = -30 MPa, o,, = 
20 MPa, ov = 5 MPa, ox, = -30 MPa, and oyz = 0. Find o,,, 
opy, o,,, and ops for point P on a cutting plane Q with normal 
vectorN: (11 A, 1/ a, I/ a). 
2.2. The thin, flat plate shown in Figure P2.2 is subjected to uni- 
form shear stress. Find the normal and shear stress acting on the 
cutting plane A-A. 

rl- 
A 

FIGURE PZ.2 

2.3. At a point in a beam, the stress components are o, = 20 
MPa, ox, = lo& MPa, and oYY = o,, = oq = oy, = 0. 

a. Determine the principal stresses ol 2 oz 2 0,. 

b. Determine the direction cosines of the normal to the plane on 
which ol acts. 
2.4. The stress components at a point in a plate are qrx = -100 
MPa, oYY = o,, = 20 MPa, oq = oY, = 0, and ox, = -80 MPa. 
a. Determine the principal stresses ol 2 oz 2 0,. 
b. Determine the octahedral shear stress. 
c. Determine the maximum shear stress and compare it to the 
octahedral shear stress. 
d. Determine the direction cosines of the normal to one of the 
planes on which the maximum shear stress acts. 
2.5. The stress components at a point in a plate are q, = 80 
MPa, oYy = 60 MPa, o,, = oxY = 20 MPa, o,, = 40 MPa, and 
oYz = 10 MPa. 
a. Determine the stress vector on a plane normal to the vector 
i + 2j + k. 
b. Determine the principal stresses o, 2 o2 2 0,. 
c. Determine the maximum shear stress. 
d. Determine the octahedral shear stress. 
2.6. The stress array (Eq. 2.5) relative to axes (x, y ,  z )  is given by 

.=[I a ]  
where the stress components are in [MPa]. 
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a. Determine the stress invariants of T 
b. Consider a rotation of the (x, y) axes by 45" counterclockwise 
in the (x, y) plane to form axes (X, Y). Let the Z axis and the z 
axis coincide. Calculate the stress components relative to axes 
(X, r, Z). Note that the direction cosines between axes (x, y, z) 
and (X, r, Z) are given by Table 2.2, where the rotation of 45" 
determines l , ,  m I , n I , . . . .  

c. With the results of part (b), determine the stress invariants 
relative to axes (X, Y,  Z) and show that they are the same as the 
invariants of part (a). 
2.7. Relative to axes (x, y, z), body A is loaded so that o, = oo 
and the other stress components are zero. A second body B is 
loaded so that q, = 7, and the other stress components are zero. 
The octahedral shear stress roc, has the same value for both 
bodies. Determine the ratio odzo. 
2.8. The stress components at a point in a flywheel are O, = 

a. In terms of z,, calculate the principal stresses. 
b. Determine the directions of the principal stress axes, insofar 
as they are determinate. 
2.9. The principal stresses ol and 0, are known, and o, 2 o2 2 
q. Determine the value of o2 for which the octahedral shear 
stress roc, attains an extreme value. 
2.10. The nonzero stress components relative to axes (x, y, z) 
are o,, = -90 MPa, ayy = 50 MPa, and oq = 6 MPa. 
a. Determine the principal stresses, o, 2 9 I 0,. 
b. Calculate the maximum shear stress. 
c. Calculate the octahedral shear stress. 
d. Determine the angle between the x axis and the X axis, where 
X is in the direction of the principal stress 0,. 
2.11. Let (ax, ay, a,) be stress vectors on planes perpendicular, 
respectively, to the (x. y, z) axes. Show that the sum of the 
squares of the magnitudes of these stress vectors is an invariant, 
expressible in terms of the stress invariants I, and IF 
2.12. Determine the principal stresses and their directions for 
each of the sets of stress components listed in Table P2.12. Also 
calculate the maximum shear stress and the octahedral shear 
stress. The units of stress are [MPa]. 

oYy = o,, = 0 and oq = o,, = oY, = 70. 

TABLE P2.12 

*xx o y y  022 *xy 0 x 2  oyz 

(a) 15 -4 10 -3 0 1 

(b) 10 -5 0 -5 0 0 

(c) -10 -5 10 2 3 4 
(d) 10 -5 -5 2 2 0 
(el 10 0 0 0 0 0 

2.13. The state of stress at a point is specified by the following 
stress components: 0, = oyy = o,, = 0, oq = -75 MPa, oyz = 

65 MPa, and 0, = -55 MPa. Determine the principal stresses, 
direction cosines for the three principal stress directions, and 
maximum shear stress. 
2.14. Consider a state of stress in which the nonzero stress com- 
ponents are o,, oyy, o,,, and o Note that this is not a state of ": plane stress since o,, # 0. Consider another set of coordinate 
axes (X, r, Z), with the Z axis coinciding with the z axis and the 
X axis located counterclockwise through angle 8 from the x 
axis. Show that the transformation equations for this state of 
stress are identical to Eq. 2.30 or 2.31 for plane stress. 
2.15. The state of stress at a point is specified by the following 
stress components: o, = 110 MPa, oyy = -86 MPa, o,, = 
55 MPa, oq = 60 MPa, and cry, = 0, = 0. Determine the princi- 
pal stresses, direction cosines of the principal stress directions, 
and maximum shear stress. 
2.16. Solve Problem 2.15 using the transformation equations 
for plane stress (Eq. 2.30 or 2.31). 
2.17. The state of plane stress is specified by the following stress 
components: o, = 90 MPa, oyy = -10 MPa, and oq = 40 MPa. Let 
the X axis lie in the (x, y) plane and be located at 8 = n;/6 clockwise 
from the x axis. Determine the normal and shear stresses on a plane 
perpendicular to the X axis; use Eqs. 2.10-2.12. 

In Problems 2.18 through 2.21, the Z axis for the transformed 
axes coincides with the z axis for the volume element on which 
the known stress components act. 
2.18. The nonzero stress components are ox, = 200 MPa, 
oyy = 100 MPa, and oq = -50 MPa. Determine the principal 
stresses and maximum shear stress. Determine the angle 
between the X axis and the x axis when the X axis is in the direc- 
tion of the principal stress with largest absolute magnitude. 
2.19. The nonzero stress components are 0, = -90 MPa, 
oyy = 50 MPa, and ov = 60 MPa. Determine the principal 
stresses and maximum shear stress. Determine the angle 
between the X axis and the x axis when the X axis is in the direc- 
tion of the principal stress with largest absolute magnitude. 
2.20. The nonzero stress components are o,, = 80 MPa, 
ozz = -60 MPa, and oq = 30 MPa. Determine the principal 
stresses and maximum shear stress. Determine the angle 
between the X axis and the x axis when the X axis is 
in the direction of the principal stress with largest absolute 
magnitude. 
2.21. The nonzero stress components are o, = 150 MPa, 
oyy = 70 MPa, o,, = -80 MPa, and q,, = -45 MPa. Determine 
the principal stresses and maximum shear stress. Determine the 
angle between the X axis and the x axis when the X axis is in the 
direction of the principal stress with largest absolute magnitude. 
2.22. Using transformation equations of plane stress, 
determine oxx and ox, for the X axis located 0.50 rad clock- 
wise from the x axis. The nonzero stress components are given 
in Problem 2.18. 
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uxx = 120 MPa 
2.23. Using transformation equations of plane stress, determine 
oxx and ox, for the X axis located 0.15 rad counterclockwise 
from the x axis. The nonzero stress components are given in 
Problem 2.19. 
2.24. Using transformation equations of plane stress (see Prob- 

rad clockwise from the x axis. The nonzero stress components 
are given in Problem 2.20. 
2.25. Using transformation equations of plane stress (see Prob- 
lem 2.14), determine oxx and ox, for the X axis located 0.70 
rad counterclockwise from the x axis. The nonzero stress com- 
ponents are given in Problem 2.21. 
2.26. Using Mohr's circle of stress, determine oxx and oxy for 
the X axis located 0.50 rad clockwise from the x axis. The non- 
zero components of stress are o, = 200 MPa, oyV = 100 MPa, 
and oxy = -50 MPa. 

%x = 01 
lem 2.14), determine oxx and oxy for the X axis located 1.00 -3 

X 

FIGURE P2.31 

2.27. Using Mohr's circle of stress, determine oxx and oxy for 
the X axis located 0.15 rad counterclockwise from the x axis. 
The nonzero components of stress are cr, = -90 MPa, aYy = 
50 MPa, and oq = 60 MPa. 
2.28. Using Mohr's circle of stress, determine oxx and oxy for 
the X axis located 1 .OO rad clockwise from the x axis. The non- 
zero components of stress are o, = 80 MPa, o,, = -60 MPa, 
and oq = 30 MPa. 

X 

2.29. Using Mohr's circle of stress, determine oxx and ox, for 
the X axis located 0.70 rad counterclockwise from the x axis. 
The nonzero components of stress are 0, = 150 MPa, oyy = 
70 MPa, o,, = -80 MPa, and oxr = -45 MPa. 
2.30. A volume element at the free surface is shown in Figure 
P2.30. The state of stress is plane stress with o, = 100 MPa. 
Determine the other stress components. 

FIGURE P2.32 

uv 

FIGURE P2.30 

2.31. Determine the unknown stress components for the volume 
element in Figure P2.31. 
2.32. Determine the unknown stress components for the volume 
element in Figure P2.32. 
2.33. Determine the unknown stress components for the volume 
element in Figure P2.33. 

FIGURE p2-33 

F' uXx = 80 MPa 
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In Problems 2.34 through 2.38, determine the principal stresses, 
maximum shear stress, and octahedral shear stress. 
2-34. The nonzero stress components are 0, = -100 MPa, 
oyy = 60 MPa, and oxy = -50 MPa. 
2.35. The nonzero stress components are 0, = 180 MPa, 
oyy = 90 MPa, and oxy = 50 MPa. 
2.36. The nonzero stress components are o, = -150 MPa, 
oyy = -70 MPa, o,, = 40 MPa, and oxy = -60 MPa. 
2.37. The nonzero stress components are oxx = 80 MPa, oyy = 
-35 MPa, o,, = -50 MPa, and oxy = 45 MPa. 

2.42. The state of stress at a point is given by o, = -90 MPa, 
oyy = -60 MPa, o,, = 40 MPa, oxy = 70 MPa, oy, = -40 MPa, 
and 0, = -55 MPa. Determine the three principal stresses and 
maximum shear stress. 

2-43. The state of Stress at a point is given by oxx = -150 MPa, 
oyy = 0, o,, = 80 MPa, oxy = -40 MPa, oy, = 0, and o, = 
50 MPa. Determine the three principal stresses and maximum 
shear stress. 
2.44. a. Solve Example 2.1 using Mohr's circle and show the 
orientation of the volume element on which the principal 
stresses act. 

2.38. The nonzero stress components are o, = 95 MPa, oyy = 0, 
o,, = 60 MPa, and oq = -55 MPa. 

b. Determine the maximum shear stress and show the orienta- 
tion of the volume element on which it acts. 

2.39. The state of stress at a point is given by a, = -120 MPa, 
oyy = 140 MPa, o,, = 66 MPa, oxy = 45 MPa, oy, = -65 MPa, 
and o, = 25 MPa. Determine the three principal stresses and 
directions associated with the three principal stresses. 
2.40. The state of stress at a point is given by o, = 0, oyy = 
100 MPa, o, = 0, oxy = -60 MPa, oyz = 35 MPa, and 0, = 
50 MPa. Determine the three principal stresses. 

oyy = -55 MPa, o,, = -85 MPa, oq = -55 MPa, oyz = 33 MPa, 
and o, = -75 MPa. Determine the three principal stresses and 
maximum shear stress. 

2.45. At a point on the flat surface of a member, load-stress rela- 
tions give the following stress components relative to the (x, y ,  z) 
axes, where the z axis is perpendicular to the surface: o, = 
240 MPa, oyy = 100 MPa, oxy = -80 MPa, and o,, = ox, = oy, = 0. 
a. Determine the principal stresses using Eq. 2.20 and then 
again using Eqs. 2.36 and 2.37. 
b. Determine the principal stresses using Mohr's circle and 

principal stresses act. 
c. Determine the maximum shear stress and maximum octahe- 
dral shear stress. 

2.41* The state Of stress at a point is given by = 120 MPa, show the orientation of the volume element on which these 

Sections 2.5-2.8 

The problems for Sections 2.5-2.8 involve displacements, 
deformations, and strain states at a point in a structural or 
machine member. These quantities, as with their stress counter- 
parts, are important in design and failure criteria. 
2.46. Verify the reduction of Eqs. 2.46 to Eqs. 2.50. 
2.47. Verify the reduction of Eqs. 2.46 to Eqs. 2.53. 
2.48. Verify the reduction of Eqs. 2.50 to Eqs. 2.54. 
2.49. Show that Eqs. 2.65-2.67 yield Eqs. 2.68. 
2.50. By the procedure outlined in the text, derive Eq. 2.7 1. 
2.51. By the procedure outlined in the text, derive Eq. 2.76d. 
2.52. By the procedure outlined in the text, derive Eqs. 2.76e 
and 2.76f. 

FIGURE P2.53 

b. Determine E,, at point Q based on the assumption that dis- 
Placements are not 

2-54. mmY Practical Problems, the State of strain is 
approximated by the condition that the normal and shear strains for 

2.53. The tension member in Figure P2.53 has the following 
dimensions: L = 5 m, b = 100 mm, and h = 200 111111. The (x, y ,  
z) coordinate axes are parallel to the edges of the member, with 
origin 0 located at the centroid of the left end. Under the defor- 
mation produced by load P, the origin 0 remains located at the 
centroid of the left end and the coordinate axes remain parallel 
to the edges of the deformed member. Under the action of load 
P, the bar elongates 20 mm. Assume that the volume of the bar 
remains constant with E, = eYy. 
a. Determine the displacements for the member and the state of 
strain at point Q, assuming that the smd-displacement theory 
holds. 

some direction, say, the z direction, are zero; that is, E,, = eZx = E , ~  = 
0 (plane strain). Assume that E,, ~ y v ,  and exy for the (x, y )  coordi- 
nate axes shown in Figure P2.54 are known. Let the (X, Y) coordi- 
nate axes be defined by a counterclockwise rotation through angle 

X 

FIGURE P2.54 
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6 as indicated in Figure P2.54. Analogous to the transformation for 
plane stress, show that the transformation equations of plane strain 
are 

e x x = e , ~ ~ s 2 e + ~ ~ i n 2 e + ~ ~ , ~ i n e ~ ~ ~ ~  
eW = sin2e+ eYY cos2e- 2~, sin ecos e 
e x y = - ~ , ~ i n e c o ~ e + ~ ~ ~ i n e c o ~  e +  E , , ( c o s ~ ~ - s ~ ~ ~ B )  

(See Eq. 2.30.) 
2.55. A square panel in the side of a ship (Figure P2.55) is 
loaded so that the panel is in a state of plane strain (ezz = ezx = 

a. Determine the displacements for the panel given the defor- 
mations shown and the strain components for the (?c, y) coordi- 
nate axes. 
b. Determine the strain components for the (X ,  Y) axes. 

ezy = 0). 

1 mm 
Straight yv 

O 0" C 

lines 

FIGURE P2.55 

2.56. A square glass block in the side of a skyscraper (Figure 
P2.56) is loaded so that the block is in a state of plane strain 

a. Determine the displacements for the block for the deformations 
shown and the strain components for the (x, y) coordinate axes. 
b. Determine the strain components for the ( X ,  Y) axes. 

(ezz = e2., = EZY = 0). 

2mm-- +' 
FIGURE P2.56 

2.57. Determine the orientation of the ( X ,  Y) coordinate axes for 
principal directions in Problem 2.56. What are the principal 
strains? 

2.58. A rectangular airplane wing spar (Figure P2.58) is loaded 
so that a state of plane strain (eZz = eZx = ezY = 0) exists. 
a. Determine the displacements for the spar for the deforma- 
tions shown and the strain components at point B. 
b. Let the X axis extend from point 0 through point B. Deter- 
mine exx at point B. 

Y 

A 

lines 

0 

FIGURE P2.58 

2.59. The nonzero strain components at a point in a machine 
member are eXx = 0.00180, eyy = -0.00108, and yxy = 2eXy = 
-0.00220. Using the transformation equations for plane strain 
(see Problem 2.54), determine the principal strain directions 
and principal strains. 
2.60. Solve for the principal strains in Problem 2.59 by using 
Eqs. 2.77b and 2.78. 
2.61. Determine the principal strains at point E for the 
deformed parallelepiped in Example 2.8. 
2.62. When solid circular torsion members are used to obtain 
material properties for finite strain applications, an expression 
for the engineering shear strain xx is needed, where the (x, z )  
plane is a tangent plane and the z axis is parallel to the axis of 
the member as indicated in Figure P2.62. Consider an element 
ABCD in Figure P2.62 for the undeformed member. Assume 
that the member deforms such that the volume remains constant 
and the diameter remains unchanged. (This is an approximation 
of the real behavior of many metals.) Thus, for the deformed 
element A*B*C*D*, A*B* = AB, C*D* = CD, and the distance 
along the z axis of the member between the parallel curved 

FIGURE P2.62 
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lines A*B* and C*D* remains unchanged. Show that Eq. 2.71 
gives the result ya = tan a, where a is the angle between AC 
and A*C*, where yu = 26, is defined to be the engineering 
shear strain. 
2.63. A state of plane strain exists at a point in a beam, with the 
nonzero strain components en = -2000 p, en = 400 p, and E = 

a. Determine the principal strains in the (x, y )  plane and the ori- 
entation of the rectangular element on which they act. (See 
Example 2.10.) 
b. Determine the maximum shear strain in the (x, y )  plane and 
the orientation of the rectangular element on which it acts. 
c. Show schematically the deformed shape of a rectangular ele- 
ment in the reference orientation, along with the original unde- 
formed element. (See Example 2.10.) 
2.64. A square plate, 1 m long on a side, is loaded in a state of 
plane strain and is deformed as shown in Figure P2.64. 

xy 
-900 

12.5 

25 rnrn 

FIGURE P2.64 

a. Write expressions for the u and v displacements for any point 
on the plate. 
b. Determine the components of Green strain (Eq. 2.62) in the plate. 
c. Determine the total Green strain (Eq. 2.61) at point B for a 
line element in the direction of line OB. 
d. For point B, compare the components of strain from part b to the 
components of strain for small-displacement theory (Eq. 2.81). 
e. Compare the strain determined in part c to the corresponding 
strain using small-displacement theory. 
2.65. Determine whether the following statements are true or false. 
a. Strain theory depends on the material being considered. 
b. Stress theory depends on strain theory. 
c. The mathematical theories of stress and strain are equivalent. 
d. The correct strains of a strained material must be compatible. 

Section 2.9 

The problems for Section 2.9 involve the determination of prin- 
cipal strains and maximum shear strain from measurements by 
strain rosettes. 

2.66. Show that the strain components of Example 2.11 are 
compatible. 
2.67. For a problem of small-displacement plane strain, the 
strain components in a machine part, relative to axes (x, y, z) ,  
are 

Determine the (x ,  y )  displacement components (u. v) ,  for the 
case where the displacement components (u, v) vanish at x = y = 0 
and the slopes (&I&, &I&) are equal at x = y = 0. That is, 

ulx=y,o = VI x = y = o  = o  (b) 

(c) 

2.68. Show that Eqs. 2.84 reduce to Eqs. 2.85 for cylindrical 
coordinates. 
2.69. Show that Eqs. 2.84 reduce to Eqs. 2.86 for spherical 
coordinates. 
2.70. Show that Eqs. 2.84 reduce to Eqs. 2.87 for plane polar 
coordinates. 
2.71. Assume that the machine part shown in Figure E2.8 
undergoes the (x, y, z )  displacements 

- $ 1  x = y = o  -21 x = y = o  

u = C 1 X Z ,  v = c 2 y z ,  w =  c3z 

where the meter is the unit of length for (u, v, w) and (x,  y, z) .  
Use small-displacement theory to: 
a. Determine the components of strain at point E, in terms of cl, 
c2, and c3. 
b. Determine the normal strain at E in the direction of the line 
EC, in terms of cl, c2, and c3. 
c. Determine the shear strain at E for the lines EF and ED, in 
terms of cl, c2, and c3. 

d. Obtain numerical values for parts a, b, and c, for c1 = 0.002 
m-', c2 = 0.004 m-', and c3 = -0.004 m-'. 
2.72. The small-displacement strain components in a cam lobe 
are 

where A,  B, C, D, E, and F are small constants. Determine 
whether or not these strain components can be compatible. 

2.73. Show that for Example 2.12, when 6 = 45", the principal 
strains are given by 
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= ~ ( E , + E , ) + R  

c. Construct the corresponding Mohr's circle for the rectangular 
rosette. 
2.76. For the delta strain rosette (Figure 2.2Oa), let arm a be 
directed along the positive x axis of axes (x, y). 
a. Show that the maximum principal strain is located at angle 6, 
counterclockwise to the x axis, where 

and the maximum strain el is located at angle 9, counterclock- 
wise from the x axis, where 

2Eb - E,  - E ,  
tan243 = 

' a  - 'C 

2.74. Show that for Example 2.12, when 6 = 60", the principal 
strains are given by h ( E b  - E c )  tan 26 = 

2Ea - Eb - E, 

= - ( E ,  1 + + E,) + R 
3 

= - ( E , + E ~ + E , ) - R  1 
3 

b. Show that the two principal surface strains el and e2 are 
given by 

, - R  
E, + Eb -k E ,  Ea + E b  + E 

3 
+ R ,  € 2 ~  

3 
E L  = 

where 
and the maximum strain 
wise from the x axis, where 

is located at angle 9, counterclock- 
ID 

R = i [ (2ea -Eb-E , )  2 + 3(eb-E,f] 
h ( € b  - 

tan 29 = 
c. Construct the corresponding Mohr's circle for the delta 
rosette. 
2.77. Let the arm a of a delta rosette (Figure 2.204 be directed 
along the positive x axis of axes (x ,  y). From measurements, 

= 2450 p, eb = 1360 p, and Ec = -1310 p. Determine the two 
principal surface strains, the direction of the principal axes, and 
the associated maximum shear strain E ~ .  

2.78. Let the arm a of a rectangular rosette (Figure 2.20b) be 
directed along the positive x axis of axes (x, y). Using Mohr's 
circle of strain, show that 2eq = y, = 26, - E, - Ec. 

2Ea - Eb - E, 

2.75. For the rectangular strain rosette (Figure 2.20b), let arm a 
be directed along the positive x axis of axes (x, y). 
a. Show that the maximum principal strain is located at angle 0, 
counterclockwise to the x axis, where 

2Eb-Ea - E ,  
tan 26 = 

E - E ,  

b. Show that the two principal surface strains 
given by 

and e2 are 
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